

ADEYEMI COLLEGE OF EDUCATION ONDO, ONDO STATE

DEPARTMENT OF INTEGRATED SCIENCE NCE COURSE OUTLINE

List of	Course	Course Titles	Course Outline	Units	References
Courses	Codes				
1.	ISC 111	Mathematics for Science I	 Use calculating aids such as tables and electronic calculators for me four arithmetic functions, plus reciprocals, square roots, sine, cosines, tangents, exponentials and logarithms. 1.1 Take account of accuracy in numerical work so that significant figures are neither lost nor carried beyond what is justified. 1.2 Make appropriate evaluations of numerical expressions (e.g. n² = 10; sin 300 = 0.5) and use such approximations to check the magnitudes of machine * calculations 1.3 Use the following as examples: Exponential growth in Human population Population data: the accuracy of census, sample survey and vital registration system. Population quantities e.g. birth rate, population density. (2) ALGEBRA 2.1 Positive and negative indices and square roots. 2.2 Simple algebraic equations, linear equations and quadratic equations, using correct formulae. 	1	Adler, I., & Miller, R. (1990). Math ematics. New York: Doubleday. Williams, E. (1979). Math ematics. Woodbury, N.Y: Barron's Educational Series, Inc.
2.	ISC 112	Science Education I	The science methodology component of the course acts as a bridge between the more formal Education course taught by the Education Department and the science content which forms the bulk of the work done within the NCE Integrated	1	John, W. (2000). Science education.

Science. The focus is on the question: how can we help children to learn science? This subsumes two further questions: "how do children learn science? What is special about science? The understanding of diseases caused by viruses and other microbes e.g. AIDS and the search for their cure is an example of the uses, to which 'man puts scientific knowledge. These questions loosely correspond to cognitive and developmental psychology and to the sociology and history of science. These themes are presented as questions in order to emphasize their application to classroom practice and curriculum implementation. The first year of Science Education (course ISC 112 and 122) concentrates upon the psychological, philosophical and historical aspects of answering these questions."HOW DO CHILDRNE LEARN SCIENCE?" 1.0A Brief Introduction 1.1 History and philosophy of integrated Science; 1.2 Traditional African Ideas; 1.3 Behaviourism; 1.4 Constructivism;	New York, NY. Association for Science Education. (1961). Scien ce and education: Ib. London: Murray.
 1.4 Constructivisiti; 2.0 CURRENT OR RECENT COMPETING THEORIES ON LEARNING Their implications for the Science Curriculum; 2.1 Skinner's behavioural ideas; 2.2 The Bloom taxonomy of educational objectives; 2.3 Gagne's ideas; 2.4 Piagetian Stage theory; 2.5 Brunner's ideas; 2.6 Ausubel and the alternative conceptions movement; 2.7 Application of education theories to science teaching. 	
only, provisional and arise out to several competing theories.	

			 The greatest emphasis should be laid upon the Piagetian stage theory because it is important to give the students a firm grip upon the most wide-ranging and easily applicable theory we have to hand at present. (Time: 16 hours, with at least 6 hours in Piaget). 3.0 EVIDENCE FROM RESEARCH 3.1 Stages of cognitive development and the cognitive demands of science curricula; 3.2 Children's alternative conceptions; 3.3 Scientific concepts; 3.4 Science Education Research from Nigeria 		
3.	ISC 113	Introduction to Scientific Methods	 Definition of science, ethics and science process skills as ways of finding but about the environment and attempt to put structure on it. Assumptions of Science concerning nature and the processes and products of scientific investigation. 1.0 OBSERVATION Senses and related organs Use of senses to make and record observations Uses of Aids such as microscope, hand lens, telescope, glasses, hearing Aids. MEASUREMENT Standard S.I. units and common related units for measurement of length, area, volume mass, temperature and time. Apparatus and instruments for measurement in the units specified in 2.1 CLASSIFICATION Grouping or classifying objects in the environment by colour, shape, behaviour and other observed criteria.	1	Weatherall, M. (1969). <i>Scien</i> <i>tific method</i> . New York: Simon and Schuster.

			Classification of living things: plants and animals; vertebrates and invertebrates; groups of vertebrates, flowering and non- flowering plants. 4.0 ETHICS OF SCIENCE AND SCIENTIFIC ATTITUDES Knowing the ethics of science and developing scientific attitudes know the assumptions of science concerning nature and the processes and products of scientific investigation/implication. SCIENCE PROCESS SKILLS Application of science process skills to emphasis on communicating, interpreting data, designing experiments, reporting completely and accurately formulating	
			hypotheses, generalizing, predicting, etc	
4.	ISC 114	Components of Environment I	 Air, water, weather and soil as components of the environment. 1.0 AIR 1.1 Air pollution, sources and consequences of air pollution 1.2 One method for determining experimentally the proportion of oxygen in the atmosphere; 1.3 Qualitative and Quantitative composition of air in terms of nitrogen, oxygen, and water vapour, inert gases and carbon dioxide; 1.4 Physical properties and uses of oxygen and carbon dioxide and their importance of living things; 2.0 WATER 2.1 Sources of water; 2.2 Importance of water to Life; 2.3 Nature of water as a solvent; 2.4 Importance of oxygen dissolved in water: 	Balasubrama nian, A. (2008). Ecosystem and its components. Raven, P. H., Hassenzahl, D. M., Hager, M. C., Gift, N. Y., & Berg, L. R. (2015). Envir onment.

	2	2.5	Sources of water and contaminating agents, (e.g:	
			sewage, oil, chemicals):	
	2	2.6	Methods of water purification (e.g. use of chemicals,	
			filtration, boiling, sedimentation);	
	2	2.7	Compare rural and urban water supplies;	
	2	2.8	Effects of water cycle, including the formation of ice,	
			thunder, lightning, non-uniform rainfall on the	
			environment, with respect to plant growth and erosion.	
	3	3.0	WEATHER	
	3	8.1	Elements of weather (temperature, humidity, wind,	
			rain, etc.);	
	3	3.2	Uses of simple weather recording instruments in a	
			weather station (thermometer, rain guage, wind vane,	
			barometer, hygrometer, etc.);	
	3	3.3	Keep weather records in chart form.	
	4	I.O	SOIL	
	4	1.1	Organisms that live in soils in our environment;	
	4	1.2	Mineral component of the soil: soil texture, inorganic	
			and organic components, air content and water;	
	4	1.3	Formation of soil in the light of climate and weathering,	
			parent material, topography, organisms, influence of	
			man and time;	
	4	1.4	Types of soil: sandy, clay, loamy, humus, etc:	
	4	1.5	Value of soil as a non-renewable resource and discuss	
	·	-	the uses and importance of soil.	
	Δ	1.6	Common causes and forms of soil erosion and the	
	'		relevant preventive measures	
	Л	17	Practices that influence of buch huming regulations	
	4	t./	agont	
		1.0	ageni.	
	4	ł.ŏ	Drainage patterns, causes, prevention and effect	

5.	ISC 115	Nature of Matter I	States of Matter explained in terms of particles; physical and chemical changes; separation; elements; compounds and mixtures.	1	Cooper, C. (2000). <i>Matte</i> <i>r</i> . London: Dorling
			1.0. STATES OF MATTER		Kindersley.
			1.1 Evidence for the existence of matter as particles:		5
			1.2 General physical properties of solids, liquids and gases;		
			1.3 Boyle's law, Charles' law, Ideal gas law, PV=nRT and the effect of intermolecular.		
			1.4 Vapour pressures of a pure liquid depends on temperature (qualitative treatment only);		
			1.5 Vapour pressure and relationship with external pressure: Structure of NaCI as an ionic solid and carbon (diamond) and carbon (graphite) as macromolecular-structures;		
			plastics as polymers (cross-linked or not) and glasses as super cooled liquids.		
			2.0 PHYSICAL AND CHEMICAL CHANGES; SEPARATION TECHNIQUES		
			2.1 Differences between physical and chemical changes;		
			2.2 Meanings of solution, solute, solvent, and apply them to Aqueous and some non-aqueous systems;		
			2.3 Techniques and applications of distillation, evaporation, sedimentation, crystallization, filtration, and cliromatography e.g. paper and alum.		
			3.0 ELEMENTS, MIXTURES AND COMPOUNDS		
			3.1 Classification of matter into elements, mixtures and		
			compounds; and distinguish between them;		
			3.2 Classification of common elements as metals and non-		
			metals and as solids, liquids, or gases at room temperature.		
			3.3 Uses of common elements, compounds and mixture		

6.	ISC 211	Components of	1.0 CHARACTERISTICS OF LIVING AND NON LIVING THINGS	2	Barbour, S.
		Environments II			(2000). The
			Characteristics and classification of living things, cells		environment.
			chromosomes and genes, bacteria and viruses, fungi.		San Diego:
			1.1 Classification of growth in terms of temporary and		Press.
			1.2 Physical and chemical changes in non living things and		Beiser, A.
			their characteristics.		(1984). The earth.
			1.0 PLANT AND ANIMAL CELL		Westport,
			2.1 Cheek cells and onion cells for viewing under a microscope,		Conn: H.S. Stuttman
			and to observe permanent slides of different types of cells under microscope.		Stuturian.
			2.2 Distinguish between animal and plant cells e.g cytoplasm,		
			cell wall, cell membrane, nucleus, vacuoles and chloroplast		
			in a plant cell, cytoplasm, cell membrane and nucleus in		
			animal cell.		
			CHROMOSOMES AND GENES		
			Nuclei as it contain chromosomes and that chromosomes		
			carry, genes: Genes as a carrier of chemical information which		
			determines an individual Characteristics/traits.		
			Sex preferences among Nigerian communities and		
			consequences on population: Importance of family trait.		
			BACIERIA AND VIRUSE		
			are important members of ecological cycles importance of		
			bacteria in natural Bacteria and viruses and their effects on		
			food. nutrition and health.		
			,		
			5.0 FUNGI		
			5.1 Fungi and state their characteristics:		
			5.2 types of fungi;		
			5.3 Occurrence of fungi, their use as food and in industry;		

			5.4 Fungi and its effects on food, nutrition and health		
7.	ISC 212	Science Education II	 In the second year, student-teachers will be turning their, attention towards the business of teaching science in schools to pupils. This is the time to draw together the work of the first year and to think about how the fundamental question of: "How can we help children learn science?". Can be translated, into classroom practice. The Science Education Courses ISC 212 and ISC 222 address the problem of effective. Management of the Learning Environment The following topic form the basis of discussion (about 10 hours for each); 1.0 THE TEACHER AS A MANAGER OF THE LEARNING ENVIRONEMENT 1.1 Time and lesson planning; 1.2 Resources and pupil activities; 1.3 Pupils and grouping of pupils for different activities; 1.4 Space and efficiency of operation 		John, W. (2000). Science education. New York, NY. Association for Science Education. (1961). Scien ce and education: Ib. London: Murray.
			 OPPORTUNITIES 3.1 Finding out what children already think and know; 3.2 Presenting counter demonstrations and arguments, generating cognitive conflict; 3.3 Drawing arguments and evidence together; 3.4 Maximizing children's involvement in their own learning. 3.5 Using context to explain concepts 3.6 Use of analogies (similes and metaphors) 		
8.	ISC 213	Man in the Environment	 The special role of the human animal, ecological concepts, the influence of man on the environment, pollution and conservation. 1.0 HUMAN BEINGS AS HIGHER ANIMALS 	1	Rasmussen, F. A., Holobinko, P., &

	1.	.1	Characteristics of primates; the similarities and differences with other animals:	Showalter, V. M.
	1.	.2	Human beings and other primates. (differences in terms	(1974). Man
			of skeletal structure, size of brain, manipulation and use	and the
			of tools, language and intelligence).	environment.
	1.	.3	Application of basic intelligence skills e.g observations,	Houghton
			measurement and inquisitiveness.	Mifflin.
	2.	.0	INTRODUCTORY ECOLOGY	Correvall A
	2.	.1	Concept of an ecosystem;	(1987) Man
	2.	.2	Major ecosystems in Nigeria; deciduous, savannah, and tropical forests;	and the
	2.	.3	Physical and biotic factors and uses of smaller	Cambridge:
			ecosystems e.g ponds, streams, farmland, etc;	Cambridge
	2.	.4	food webs;	University Press.
	2.	.5	People's use of land with reference to food production and food chains;	
	2.	.6	Carbon and nitrogen cycles;	
	2.	.7	Importance of fertilizers, herbicides and pesticides in	
			food production;	
	2.5	.8	Traditional and modem methods of food preservation	
	2.	.9	Associations; parasitism, symbiosis and	
			commensalisms.	
	3.	.0	THE ROLE OF MAN IN RESOURCE	
			DEVELOPMENT	
	3.	.1	Exploitation of resources by man, such as deforestation,	
			desertification (Definition, causes, effects and control)	
		2	and mining etc.	
	3.	.2	causes or environmental pollution; biological (sewage),	
			amissions) thormal and other e.g. oil spillages clitered	
			other waste from mining	
			uner waste num mining.	

			3.3	Environment as its being affected by pollution; land, air		
				and water (rivers, lakes, the seas and pipe water).		
			3.4	Define environmental pollution-water, air and soil		
				(types)		
			3.5	Causes of the environmental pollutants, their		
				consequences and control.		
			3.6	Transfer of pollutants to the food chain, resulting in		
				concentration in carnivores; the particular danger to		
				large predators.		
			3.7	Ozone layer; definition, importance, effects depletion		
				and control measures.		
			3.8	Human activities and its effects on the environment.		
			4.0	CONSERVATION		
			4.1	Natural resources from living things and their uses in		
				Nigeria such as plant sources, animal sources and their		
				economic importance.		
			4.2	Conservation and recycling of natural resources.		
			4.3	Role of conservation organizations at local national and		
				international levels.		
			4.4	Improvement and the management of environment.		
			5.0	POPULATION STUDIES, QUALITY AND VALUE OF LIFE		
			5.1	Population and environmental quality;		
			5.2	Population and quality of life,		
			5.3	Effects of urbanization on the environment.		
			6.0	FIELD TRIP		
9.	ISC 214	Workshop Practice and	1.0	Laboratory Management	2	Workshop
		Laboratory	1.1	Laboratory rules		practice
		Management	1.2	Laboratory equipment/apparatus		series.
			1.3	Storage and management procedures		(1954).
			1.4	Parts and sue of microscope, Section Cutting; temporary		
				and permanent preparation of slides.		

	1.5	Balances: Parts and manipulation of different types of	Woodside,
		balances	G.,
	1.6	Preparation of solution – Molar and percentages.	&Kocurek,
	1.7	Indicators – pH ranges	D. S.
	1.8	Uses of burettes and pipettes and their maintenance	(1997). Envir
	1.9	Bunsen burners, flame parts and adjustments.	onmental,
	1.10	Glass-blowing.	safety, and
	1.11	The accumulator, circuit connection – series and	health
		parallel.	engineering.
			Wiley
	2.0	SAFETY IN THE ENVIRONMENT	witcy.
	2.1	First aids for victims of acid/alkali burns, electric shock	
		and other common accidents, ways/methods of	
		extinguishing fires including oil and electric fires.	
	3.0	WORKSHOP PRACTICE AND SKILL	
		ACQUISITION	
	3.1	Improvisation – definition and its advantages.	
	3.2	Production of improvised materials for teaching	
		Integrated Science at Primary and Junior Secondary	
		School Levels.	
	3.3	Recognition and use of basic carpentry tools in	
		improvisation of science equipmentse.g test-tube racks.	
		Acquisition of elementary skills in carpentry.	
	3.4	Using paper work in modelling e.g use of paper-machine	
	3.5	Glass work: Glass-cutting, construction of aquarium etc.	
	3.6	Preparation of skeletons and herbariums.	
	3.7	Elements of painting – types of paints, colour mixing and	
		sign writing.	
	10	METAL WODK	
	4.0	Identification and uses of simple instruments used in	
	4.1	metal workshop	
	12	Soldoring tochniques	
	4.2	Solucing leciniques	

	4.3	Welding techniques	
	4.5	Engraving	
	5.0	ELECTRICAL/ELECTRONIC WORK	
	5.1	Meaning of ICT, component of ICT and importance of	
		ICT.	
	5.2	Identification and uses of simple instruments used in	
		electrical workshop.	
	5.3	Simple circuit connection and types	
	5.4	Fuses and uses	
	5.5	Element Electronics	
	5.6	Mechanism of radio and tape recorder and T.V.	
		functions	
	5.7	Wavelengths and channels	
	5.8	Batteries – types, functions and maintenance	
		N.B Students should do a simple project on either of the	
		following.	
	(1)	Improvisation of apparatus/equipment for science.	
	(2)	Simple experiments to demonstrate scientific processes	
		and principles.	
	6.0	SKILLS ACQUISITION	
	6.1	Meaning and reasons for skill acquisition, the risk,	
		decision making, managing emergency situation,	
		survival strategies and learning together.	
	6.2	Type of skills such as farming, computer literacy,	
		photography, internet browsing, e-mail operation, fax,	
		desktop publishing and networking etc.	
	6.3	Importance of skill acquisition, improvement of quality	
		of life and appreciation of human capability	